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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2622

A DESCRIPTION AND A COMPARISON OF CERTATIN NONLINEAR
CURVE-FITTING TECHNIQUES, WITH APPLICATIONS TQ
THE ANALYSIS OF TRANSIENT-RESPONSE DATA

By Marvin Shinbrot
SUMMARY

Several common methods for curve fitting a set of data by least
squares are described and evalyated. The methods are evaluated by
applying them to an exsmple taken from serodynemics: the problem of
calculating the stabllity parameters of an sirplane from flight data.

There are other points considered: application of the methods to
minimization problems other then curve fitting and the question of con-
vergence to a mere stationary point as opposed to convergence to a
minimum, '

Finally, several devices-whlch lead to more rapid convergence of
the methods are dlscussed.,

INTRODUCTION

In the determination of stsbllity parameters from flight data by
the analysis of transient responses the use of a least-squares Dprocess
has been suggested (references 1 and 2). If the elevator of the test
airplane is pulsed, it 1s shown 1in reference 2 that the response in
pitching velocity 1s a nonlinear function® of the stability parsmeters;
the pitching velocity is & sum of exponentials, where the exponents and
the coefficlents of the exponentials are combinations of the stability
derivatives of the airplene. It is one of the purposes of this report
to show how the stebility parameters of an alrplene may be calculated

The expresgion "nonlinear function" as used in this report should not
be confused with nonlinear functione (i.e., functions satisfying non-
linear differential equations) usually considered in aeronautical
problems. The expression is used here in a different sense; when it
is sald that the pitching veloecity is = nonlinear function of the
stability parameters, it 1s merely meant that the pitching velocity
cannot be expressed as & simple sum of the stabllity paresmeters
multiplied by constants. N

-




2 L .. .. . . NACA TN 2622

from £flight data by means of ‘least-squares curve-fitiing techniques. A
simple least-squares solution of this problem is given by Prony's metheod, ~
by which a set of data mey be fitted to & sum of exponentials (refer- .
ences 1, 2, and reference 3, pp. 369-370). There are many objections

to this method, however, foremost smong these beilng the fact that

.examples have been encountered for which Prony's method faills entlrely.

Further examples have been met for which Prony's method, while giving .
an answer to the problem, did not yleld a good fit for the data. In c- -
general, therefore, when fitting & sum of exponentials, Prony's method, '
when it works at all, msy best be congldered ‘to give only a flrst
approximation to the desired parsmeters.

The process of curve filtting a nonlineer function by least equares
may be applied to a wide field of englneering problems and not merely
to the calculation of stability parameters. For this reason, the pres-
entation of this report. is such that the methods described mey be
applied to any reasonably smooth functiona (say, functions which are
twice continuously differentisble). Emphasis, however, is placed on
sums of exponentials, since.the occurrence of such functions is quite
common and since they are believed to be representative of the entire _
curve-fitting problem. . . N

The general problem hag mapy possible solutions, the claeslcal one
being the use of a Taylor's serles 'with all térms of order bigher than
the first omitted in order to iterate from the First approximation - o
(reference 2 snd reference 3, p. 214). In recent-years, however,
powerful new methods have been devised (references 4, 5, 6, 7, and 8). -
It is the general purpose of thls report to collect these methods under
one cover and to apply & relative evaluation to them by using them to
solve the game representative problem. The criteria which will be used
for this evaluation are the relstive amounts of labor Involved and the
rate of convergence of the iterations.

ANALYSTS

Relation of the Problem to Aerodynamlcs

It is shown in reference 1 that if g(t) is the response in pitch-
ing veloelty of an airplane to asn elevator deflection ﬁ(t), then q(t)
and 5(t) are related by the differential equation

(D% + bD + k)a(t) = (CyD + Co)8(t) (1)

where D 1is the operator d/dt; b, k, C; and Co are constants, depend-
ent on the stability derivatives of the sirplane. The problem which

then arises is that of determining the best values ("best™ to be defined
in the sequel) of these constants; being given graphicsl representations
of q(t) and 5(t) obtained fram flight data. This problem is solved in
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reference 2 by fitting q(t) to a function of the form
q = [A + Mf -XITB(T)G.T:I At + [A + .C_ll‘"ﬂ).f XaTS(—r)d-r:l >"2

A=A A=Ay
(2)
vhich is the general solution of eguation (1). In equation (2),
and Az represent constants depending on the initial conditions q%o),
(Da)t=0, end 8(0), while 1, and A, ere the roots of the charscteris-
tic equation x2 + bx + k = O.

The method used in reference 2 (herein called the Taylor's series
method) is described in reference 2 and in reference 3, pege 21hk. It
consists of finding & first epproximation to b, k, C; and C, by some
means and then using a Taylort!s expansion, with all terms of order
higher than the firsgt omitted, to llnearize q and lterate to the best
velues of the desired constants. It is the object of this report to
degeribe and evaluate other methods as well as the Taylor!s series method
for fitting nonlinear functions such as the one glven in equation (2).

If the input 8&(t) is of the pulse type, that is, 1f there is a
T such that 8(t) =0 for all t 2T, it follows from equation (2)
that for t+ 2T, q(t) is & sum.of exponentials with constent coeffl-
clents:

ait Aot
a(t) = Bt + B2 . (3)

where Bj;, Bp, A 8nd Ay ave constants. The methods described in this
report will be applied to the nonlinear function Blgxlt + Bzexzt since
this function 1s considered to be representative of the general type of
problem found. Thet is, an evaluation of the different methods for fit-
ting nonlinear functlions based on the application of the methods to a
function of this form is belieéved to be generally valid. A second (and
perhaps more important) reason for choosing a sum of exponentisls to use
as sn example is the frequency with which problems involving these funec-
tions themselves occur.

Statement of the General Problem and Its Specialization
: to Sums of Exponentials .

To formmlate the problem precisely, suppose gq(t, X3, Xpy +-- , Xm)
1s some nonlinear function of the independent varisble t and the (con-
stant) parameters xi. Iet ge(t) be & quantity which 1s measured at a
set {ti}, 1=0, 1, ... , N of N+l values of +t. It is then desired to
find the best values of the parameters xy, that is, those values which
minimize N

M=) faen) - ale)l® (1)

i=0
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e problem specifically studied in this report is the following:
. 6 - - |
a(t) = B:.e“t + Bpe?2® L {3)

where ' By, Bz, A1, A, are written insteed of x;, %5, xg, X4, and o
suppose qs'(_t)_ .is a measured quantity which, theory tells us, should e e
satisfy an identity of the form (3). The data q(t] are subject, how-

ever, to experimental error.  Let gc(t) be measured at the N+l points o
toy ti, «.. , tN. The problem then becomes that of _finding values of . S
the constants B,, Bz, A;, and A, such that -~ = T o -

N | "
o EY [Blexlti + Bper2®i _ %(ti):l : (La)

L
i=0

is a minimum. ' B ' -

In genersl, data which fit a sum of two. exponentials are oscillla- -
tory; that is, the plotted data have the sppearance of = damped sine - I
wave. If this is the case, Ay, Az; By, 8nd By -are complex numbers !_and, ) . -
if Ay = +1'1 and By = %(B + B'i), where 12 2 -1, then .)\‘2 = 1-1%%, | -

Be = 5(s - B1) and - S - s
a(t) = eZT‘(B cos 1't - Btsin 1't) (3a)

It 1ig more convenient to work with q(t) in this form then in the com- L

rlex form (3). Applying this notation to e_qua,‘_tion__(_l_s_,_a._)_, we obtain, C e r e
finally, ' ' :

N - . - = _ _ - —

M= e (B cos 1%ty - Brein I'ty) - qe(’ci):l (4p) «

i=0 . . . . - o . .. . P WL oLl

which must be minimized.

The Iteration Methods

It 1s now assumed that by some means. (Pronyt's method mey usually be - ) _
used for sums of exponentials) a first approximation to the parameters LT
has been found. What follows is & deseription of the methods which mey '
be uged to improve these vslues. ' C

Steepest descent methods.- In order to be sble to apply a geometric _
interpretation to the .usual steepest descent method, 1t is first assumed -
that the quantity M to be minimized 1s a function .of only two parsm- |
eters, x and y (x end y being here written instead of X3 and x>
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because of the profusion of subscripts.which willl soon occur). The
obvious generalizatlion to more parameters willl then be presented. Sup-
pose a first approximation (%o, yo) has been found. Let the values of
the parameters at which M is & minimum be &€ and 7. Further, let

My, Mxo’ Myb’ Mxoxo’ Mkon’ end Mybyb be the values of M and its

indicated partial derivatives at the first spproximetion, and let u be

the value of M at (&, 3). Suppose the surface M = M(x,y) is plotted
as in the following sketch:

(XO:YO:O)

Sketch (a)

Consider now the level curve C,;, which is the intersection of the sur-
face M = M(x,y) and the plane M = My. Let Q be the point (xo0,¥o,
Mo), and consider also the curve C,; which is the intersection of

M = M(x,y) and the normal Plane to €31 at Q. The direction of steepest
descent from the first spproximation @ is the direction of the gradi-
ent of M, that is, the direction of the curve C, at the point Q
(reference 9, pp. 76-78). The minimum P of C, 1is taken as & new
approximation to (E,n,u) and the process is repested.

In order to find the coordinates of P, project the normel to the
level curve C; at (%o,¥o;Mo) onto the (x,y) plane, and let n be
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the distence of an arbiltrary point
M on this projection from the point
(x0,¥0,0). A coordinate system has
_ now been introduced in this (M,n)
Q plane. (See sketch (b).)

c In this plane, the curve Cg
2 hes some equation M = M(n) By
Taylor's theorem,

P : ' e
M = Mo + An Mn + S5 Man (5)
approximately, where My and Mp,
are the values of the indicated
derivatives at the first approxlima-
tion "Q, and An denotes a change
D in the coordinates (x,y) in the
Sketch (b) : direction of the normal to Ci. An
approximetion to P 1s to be had
by sett —— =0 1in equa-
y ing a(an) q
tion (5). This procedure leads to .
o= -Yo ER (6)

This value of An corresponds to certain increments Ax and Ay.
It 1s these increments which are sought. What followe are manipulations
which are needed for their evaluation. -

If (n,x) and (n,y) are the angles between the . n axis end the
x and y axes, respectively, then : .

Mxo Myo
cos (n,x) = g 5 cos (n,¥y) -

The increments Ax and Ay are given by

A&x = (An) cos (n,x) = }B::xg
(1)
Ay = (An) cos (n,y) = EI'gAn

5

In order to evaluate An, expressions for . Mn and Mpn must be
‘found. An epplication of vector analysis (reference 9) leads to

i
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Mp = |grad M| = /Mg 2 + My 2 (8)

It is also clear that

_ OMn dx  OMp dy
Mnn—-g;-az"'gy—a (9)

Finally, expressions for d_x/d.n and dy/d.n must be found. The normal to
the level curve is the intersection of the two planes

Y- %Yo = - %) (x - xo) and M = My, where dx/dy is the reciprocal
of the slope of the curve C; in the plza.neM M = Myg. From this last
ax Jo

equation (M = Mp), it follows that — = - X2, The equations of the
n axls of the (M,n) plane in the space (M,x,y) then become
M
¥ = Yo =222 (x - x0)
Xo

M=20

Myo
Consider a point (x,y) on n. Then ¥y - yo = Yo (x-%0). By the
Xo

definition of n,

: 2
°T /(%f(x-xof b (xomoff = TR Miro” + Myo®

MXO M.'XIO
or
M;
X = ———Xo b ¥ = oXO |y
T . o
Similarly,
nMYo
Yy = +Jo =1 :“TYQ_ + Yo
: JMxOZ + Myoa n
Therefore
dx Mxo
_ an  Mp
) (10)
dy . M.Vo
- M
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Returning to equation (9), it then follows thst

(MxMxox, + My Mxoyo) Mx,  (Mx Mxoy, + My Myoy,) My |
Myn = — + — (92)

Mn . _Mn Mn
Thus finally, utilizing equations (6), (7), (8), and (9a),
e m Myo(Mx,® + My.D) . 1
Mo (MxMxoxo + MycMxoyo) + Myo(MxoMxoyo + MyoMyoyo) &
(7e)
AY = - My (Mx " + Myo") _
Mxo(Mx Mz xo + MyoMxoyo) + Myo(MxoMxoyo + MyoMyoyo) )

which are the desired vslues of the increments for the case of two
parameters.

These equations will now be generalized. Suppose then that M is
s functlion of the—m parameters x3, X%, ... , ¥m. Let Mg, Mi, denote

the values of M and AM/dxyi regpectively, at some first approximation.
Equations (8), (9), and (99.3 become

m o \1/2 . - . _— T
Mn = ]grad Ml = (Z M102> (ll) B
- _ e . e e
m _ i M1M3oMi0do
OMp Ox: i,3= “' :
Mpn = z S}-{‘Q gi = L = (12)
f= Oxi Mp
and equations (7a) become
m . _ ) .
Mko<LZ Mj_°2>
Axg = - A=t _ ' - (13)
- 7 M1MicMiodo
i .
i,J=2
In practice this method would seldom be applied directly to a first -
epproximation. Rather the rougher approximation An = _-_E—O-, which will
n
herein be called the method of steepest descent along a tangent, after o -

Booth (reference 4), would be used until the value of M begins to
inerease. In terms of-the individual increments, this method leads to
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- - -
Mi,2
i=1

Another steepest descent method, one which utilizes quadratic
interpolation, was developed by Booth in reference 4. As before, call
Mg the value of M at the first approximstion. Calculate increments
from equations (1L4). Call M; the value of M at the new epproxima-
tion cobtailned by adding these increments to the first spproximstions.
Further, let M,;2 be the value of M at the parametric values
obtained by adding to the first epproximations one-hslf the increments
found from equations (14). The increments which Booth finally uses then
become - -

My - WMy 5 + 3Mp ] MoMicy (15)
L(My - 2My/2 + Mo) i My 2
O

i=1

The formulas which have been derlved will now be explicitly glven
for the case where q 1s the sum of two exponentials; that is, the
case where

xg - - |

N 2
M= Z l:ez'ti(s cos L'ty - BY sin 1'hy) - qe(ti)] (4b)

i=0
Let Mo, My, Mit,, Mg, and Mgt, be the values of M and 1t deriva-
tives at the first aspproximations. Then, :

MpZ = Mzolz + MZ'02 + Mgoz + Mgroz (82)

The method of steepest descent elong & tangent glves the incremental
values

MoMi,
1= -
A Mz

Al = = ———
Mn

- MoM
ap = - 200

1
A3t=_"_%‘g__"o_J
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These increments must be added to the corresponding first epproximations
to obtain new approximations. This process is then repeated until M
increases. The psremetric values which gave the gmallest value to M
are then used ag first approximations, and one of the finer methods is
applied.

For the ordinary method of steepest descent to a minimum, eque-
tions (13) become .
Mio 7

Al = - —2
Mnn
Al = - Mr'o
Mnn
(13a)
AB = - M._.B_Q
Mnn
AB' = - B9
Mnn

where My, 1s given by

_ 1 2 2 e
Mpn = M [Mi1g Mig1o + Mih, MB%, + MBOZMBOBO + Mgy Mghph + 2(Mi MM % +

M1 MaMio80 + MigMabMiogs + MipMB Mit,p, + MigMg Mibp, + Mp M Mpo o) ]
(12s)

The quentity Mp is displayed in equation (8a). All the derivatives in
these equations are to be evaluated at the first approximations.

Finally, Booth's method gives

Al = -FMOM}:;O )
ALY = -FM;M;*’
o 3 (15=)
ap = - 7 g0
Mn'
ABY = _FMOMBb

an /
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Where

=M Wy + Mo (16)
WMy - 2M; /5 + Mp)

M1, Mi/> and My are as defined previously.

For later use, the derivatives needed for these methods are given
below. Let

€4 = eZti(ﬁ cos 1%t - B* sin 1%t1) - g (1)

Then
N
M= Z e ® (¥b)
i=0
and
N _ N
ity
M; =2 eitie (B cos 1'ty - B! sin 1't31)
i=o
151
Mt = - 2 estie (B sin 1'ti + B! cos 1'ty)

1=o > (17)

N

1ti :

Mg = 2 €je cos I'tq
i=0

164 .
MBt =2 €4€ sin 1'%y

i=0 . _ ) J
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The second derivatlives are

1t . '
Mzz = Zi 'bize i(B cos Z'ti - B' Sin l’ti_) X

1=0

Zt . .. - S - crama oD -..-
leg + e 1(p cos 'ty - B' sin 1'ty)]

N . . L
M= 2 Z [tieZti(B sin 1'%y + Bt cos Z'ti)]a_-
N > (18)

2 Z eitizeZti(B cos 1'ty - B sin 1'ty)
i=0

Mgg = Ei (ezti cos 7.“c,;|_)E

i=0

' 2
MB'B' = 2 i (equ1 sin I'ti) R S
i1=0 | -

while the mixed second derivatives sre given by
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Mipp= -2 Z‘ tianti(B sin 1't1 + B' cos 1'ty) X
i=0

[eg + eZti(B cos 1%ty - B' sin 11t1)]

Myg = 2 ﬁi t3el® cos 11ty ey + elbi(g cos 1ty - B' sin 114y)]
. i=0 ’ : |

N
Mgt= - 2 Z tieZti sin 1'ty[ey + elti(s cos 1'ti - B! sin 17t4)]
i=0

: N c
M = - 2§: ertieltl sin 1%ty - 2? (t1e®* cog 1't1) x
i=0 i=o

[e*®(p sin 1745 + p' cos 11t4) ]

Mg =2 ) (610%™ sin 11;)[e?Pi(p gan 3
Lt
1=o0

N

t .
2Z eitiez 1 cos 1Tty
i=o

"1 + B'eos 1tt3)] -

Mggr= = 2 ) (e cos 114;)(e¥PE an 314,
i=0

13

(19)
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The relaxation method.- An excellent geometric interpretation of
the relexation method in ite application to the solution of seta of . -
simulteneocus linear equations mey be found in reference 5. The formmlas _ T
required for the solution of the problem posed in this report axre _ s
derived in reference L. _ _ ’ T T e

Suppose M, the quantity to be minimized, is a function of the mnm
paremeters X, X%, ... , Xp. Assume further that some approximation
to those values of the parameters which minimize M has been found.:
Holding all these verlables save one (say, xk) constant at these approx-
imations, M becomes s function of. xk end, epplying Taylor's theorem,
we obtaln . . _ . o S .

A2
M= My + &M, + E— Me ko
using the same notation as before. For M to be e minimum, . )
dMN———-dM mist be zero. That 1 | - -
a- s . g e - o o
dxye  A(Axy) ’ ' S

AXy = - .EE_ (20)
Mie ok
As for the question.of which of the m parameters to vary,
Southwell (reference 6) suggests finding the increment Axyx in that
varlsble xx for which IMkOI is largest. Synge (reference 5) varies
Xk, Where k 1ip determined as that index which makes IM 2 /Mkokol
largest. Synge's method has the disadvantage of requiring the computa-

tion of all the second derivatives at each iteration. ZFor this
reason, Southwell's method will be uslé‘& this report.

»

If the data q¢ are to be fitted to a sum of two exponentials, M
is given by equation (Lb). The derivatives needed for the gpplication
ofthe relaxation method are displayed in equations (17) and (18).

The first step in the application of the-relaxation method is the :
calculation of all the first derivatives of M +to ascertain which has = SR
the lergest numerical value. If M; (say) is the largest of the first R

M

derivatives, then 1 18 chenged by an amount Al = - ﬁ—_l’-z—‘;)'—. Similar R
olo

formulas are used for the other parameters.

The Taylor'!s series method.-~ This method is described in detail in
reference 2. The easential formulas may be eagily derived, however,
and they will be duplicated here.

Suppose, as before, that q is a function of the m para.meters
Xys Xpy vee_ s ¥m and. the ind.ependent va.riable t- : I
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qa = q(t, x1, Xgy o

. 3 Xm) (3b)
Letting zero subscripts denote the value of the indicated quantity at
the first approximastion, end epplying Taylor's theorem, it mey be seen
that

m
)
or ) ($), o

where Axk = Xk - (xk)o. In the Teylor's series method, M i1s not
minimized. Rather, the minimizetion procedure is spplied to the approx-
imating function

(Le)

e ) { L), (3) o], - s

This minimization leads to the set of (linear) simulteneous equations

.a.(%_)=o, k=1,2, ... , m (21)
k
It
q =el®(g cos 1t - B sin 1't) (3a)
then '
g% = t¢'%(B cos 11t - B! sin 11t)
% _ teZt(B sin 1't + B' cos 1't)
YA (22)
S = e’ cos 11t
8 .
94 _._ ol gin 11t J
op!

These derivatives are reproduced here for use later.

The method of demped least squares end the problem of increasing M.-
It may sometimes occur that the least-squares processes which have thus
far been described may fall to converge. Upon applying the Taylor's
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series method, for example, increments may be found which, elthough
diminishing ﬁ' (equation (Lc)), may cause M to increase. A proce-
dure-which may be tried when one method .fails is to apply one of the
other methods, as fallure of one method for a partlcular example does
~not imply faillure of all the others.

Levenberg (reference 7) suggests a different procedure, which he
calls the method of demped least squares. In order to keep the incre-
ments small, he minimizes

m
Mt = wﬁ+z wlase)® : (1d)
L o _

where M is given in equation (4c), while w and wx are welghting
factors. A more general procedure than this would be to minimize

m

M = WM + Z wk(Axk)a
k=1 C

by any of the methods pfeviously described, where M 18 given by
equation (L4).

Campletion of the Aercdynemic Problem of the
Calculation of Stability Parameters

It wag stated in the first-section of this report that an aero-
dynamic problem to which the methods herein degeribed are applicable is
that of determining the stability coefficients, b, k, C; and Cy, of an
airplaene. These parameters are constants which occcur in the differential
equation (1) relating pltching velocity with elevator input. This
report has not as yet shown, however, how these constants may be deter-
mined; rather it has been ghown how the four other numbers 1, 1i', B,
and B' may be found. It is the purpose of this section to describe the

means by which b, k, C, and C, may be calculated from the knowledge
of 1, 1", B, and B'.

The constants b and k may be immediately computed from the
equations . . e

DI e} | (23)

(ve)
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In reference 2, it was shown how the constents Cj and Co, may be
found. However, the quite velid objJection that the method weights the
initial conditions® q(o) and g(o) too heavily can be raised. Not only
is d(o) heavily weighted, but it i1s also true that it is difficult to
calculate the derivative §(o) at all accurately. The method described
below does not involve the caleculation of ¢ and also, instead of being
entlirely dependent on the value of q &t the initial point, spplies a.
simple least-squares procedure to all the points at which 8(t) is not
yet zero to caleculate C, and Cp.

Referring to equation (2), the following notation will be used:

o ot
A, = = —i
217 3t 3
tr '
JF e M1Ts(1)dT = o - o'l
o
It is clear, then, that
o« of
Ag = o= = =i
2" 2772
tk =AnT,
f e “2'5(T)dT = ox + o'l
o
where - N
tx
o = J[‘ e'ZTS(T) cos l'rdT
o }
' 2l
w (2)
=1t
ox' = J[‘ e 8(7) sin 1'rdr
A
J

Also,

a(tx) = eu—'k{[a.'+ Mﬂ-—"-—"k—'(—’g}cos 1ty -

:

25 dot is here used to denote differentiation with respect to t.
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If the input &(t) 1s & pulse which 1s zero for all t = td’ then,
for tkx 2 tj, ok and okt are constents. Let

3
g - o'i =f e')"lTS('r)d'r
o

Thus, o = ¢ end o' = o' for all ty 2 ty. Further, for all ty = ty,

a(ty) = eltk(B cos 'ty - BY sin 1'ty) (32)

Thus, by comparing equations (3z) and (3c), since o, o', B and B' are
constants,
_ (2tg-10%)Cy - 0'Co

Zl

o= B

{1'c'+10)C1 + 0Co
Zt

ot = B! ¢

and, substituting into equation (3e),

alty) = ezt.k{{:g _ (zto'—lcr')cll';'. - o'Co + (I'Gk-lcj')('h = Uk'go:] cos 1'ty -
. AN

l: 8t 4 (Z'G'+1cr)(:’1 + oCo _ (1'0]5_'+10'k)?1 + O‘kco] sin z'tk}
1 L2 :

Replacing q(tx) by ae(tk), it may be found that the following equation
1s epproximately true:

1ty 1t
(c'-ok')e kcos 't - (G-o’k)e ksin 1ty c
— e ——— P — o -

Z'
| Ity . Tty
[2'(o-0x) - 1(o'-ox')le “cos 'tk + [2'(o'-ox') + l(o-0x)]e *sin l't]ic
2 1
= ae(tx) - *(8 cos 1tk - Y sin 17tk) (25)

Equations (25) are a set of (J+l) linear equations (for k=0, 1, ..., J).
Since .1, 1', B,and B! are known, equations (25) may be solved by the
ordinary method of least squares for linear equations (reference 3) for

Ci1 and Co. :
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APPLICATION TO AN EXAMPLE

The Flrst Approximation a.nd the Method of Steepest
Descent Along & Tangent

The example to which all methods described in thie report will be
applied is actuel flight data obtalned by measuring the pitching veloc-
ity of s test alrplane in response to an elevator pulse which was zero
for all t 2 0.4 (t = O being taken at the start of the :pulse) These
data are given on this page.

Since gqg(t) is oscillatory, the exponents A1

t g(t)
must be complex, and If ); = 1 + 1'1 and

By = 2(B+p'1), then g =1 - 1'% and By = (B - B'1), 0:}5‘ 0-224
Furthermore, q(t) and M are as given in equa- .6 .020
tions (3a) and (4b), respectively. T =057
.8 =112
It is now assumed that a first aspproximation .9 -.148
to the parameters has been found. Prony's method 1.0 -.160
(references 1, 2, and reference 3, pp. 369-370) 1.1 -.150
was applied to the date in the table on this page 1.2 -.127
giving, if zero subscripts denote the values of 1.3 -.097
the indicated parsmeters at the first epproxima- 1.4 -.062
tions, 1.5 -.032
1.6 -.005
1o = -1.1660 J—'Eg -gég

Z T = . . .
ot = 3-2799 (26) 1.9 .036

Bo = .UW616 2.0

B .035
Bot = ~-.2450 2.1 .032
2.2 027
In many examples which occur in practice, 2.3 .020
the first approximetions which have been found 2.4 .015
may be rather rough, and a rapid method for 2.5 011
improving these values before applying any of 2.6 .008
the finer meéthods described previously is 2.7 .005
desirable. Such a method has been described 2.8 .003
in the section on steepest descent methods 2.9 .001

where it was called the method of steepest 3.0 0]

descent along a tangent. If Mo, Mi,, Myt 3.1 o

Mg,, and Mg denote the values of M an 3.2 0

its indicateg partisl derivatives at the firgt
epproximations found ebove, &and if

M2 = Mz: + My %+ Mg 2 + Mg: ®
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then it was shown in that-sectlon that the values of the increments
from which new approximations mey be obtained are

L oMl )
Mha
AZ'=-M°NZ'°
- M2
Noltg > (1ha)
Aﬂ=-ﬁg
ast = -
J

This method is applied repeatedly until the value of M increases. The
values of the parameters which gave the smallest value of M are then
used as new spproximations to which are applled one of the finer methods.

The method of steepest descent along a tangent is applied to the

date of this report in teble I. Referring to teble I and letting cir- _—
cled numbers refer to colums, it may be seen that -

Mo = =@ = 0.0028

Mo =2% @) x @ =o0.0105 )
My =-25 @ x @ = o0.0091L
MB°=zz@x@=o.ooozh6 .
Mpt,= - 2E (O x @B = 0.000585
Thus,

Al = -0.1500

Al = -,1307

AB = -.0035

AB' = -,008L

The new values of the parameters sre then. .. . - . : - - : o T mmE

1 = -1.3160 -
1t = 3.1393

8= .4581 (262) .
B! = -.2534
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Using these values of the perameters ag firé‘b epproximations, 1t
is found that the value of M corresponding to these values of param-
eters 1s

M = 0.008072

which 1s larger than the value of M corresponding to the parameters
found by Prony's method. The implication here is that the first approx-
Imations found sbove were good. In general, however, it has been found
that these approximetions are not so fine and that several spplications
of the gbove method are required before M begins to Increase. It
should be noted that the lncrease in M does not imply that the value
of each parsmeter given by equations (26) is better than the correspond-
ing value displayed in equations (26a). It merely implies that over the
entire range the curve obtained from the paremeters (26) f£its the data
better than does the curve corresponding to the parameters (26a)

Since the value of M obtained after an spplication of the method
of steepest descent along & tangent was larger than the value corre-
spording to the walues obtained by Prony's method, the methods will be
gpplied using the parameters obtained by Prony's method as First
approximstions.

The Method of Steepest Descent to a Minimum

The method of steepest descent to a minimum is epplied in tables I
and IT. The first 19 columms of the calculation are identical with the
calculatlons needed for the method of steepest descent along a tangent
which are displayed in table I. The remsining columns and the sums
which are required are shown in teble II.

It follows from equations (4b), (17), (18), end (19) that if cir-
cled nmumbers refer to columns, then
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M = = (I)* = 0.0028 _ h
My, =22 @) x @ = 0.0105
Mpr, = - 22 @) x (19 = 0.00911
® x @ = 0.000246
£ x @ = 0.000585
x @) = 0.4097
@2 -2z @ x @ =0.3928

b
2
Miglo =22
z
s (®%=1.201 (27)
by
2
b
2
2

2
leollo = 2
2
2

M8o80 ™

MpLpto = @2= 2.487

Moo = - 23 (B) x B = 0.03107

Migpo =23 @ x @) =0.5665

Migo=-2Z @) x @) = -0.3231

Miggo = - 2% @) x @ -25 @ x @ = 0.3960

Mpgglo =22 (@ x @ -23 @) x @) =0.7898

Mp g, = - 2 2(® x (9 = 0.2u5 ' J

Applying equations (8a), (12a), end (132), it may be seen that

Al = -0.0217 |
Al' = -,0188

A8 = -.0005 }

AB' = -00012
J

or, applying equations (26), that the new approximstions to the parem-
eters become
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»

-1.1877

lo

1L = 3.2512

ﬂo = -lf-6ll

ﬂ'o = - ;ah—bﬁ J
Booth'!s Method

Booth's method 1s aepplied in t‘a.bles I, IT, IIT, and IV. Applying
equations {15a) and (16) end the sums Ffound in tebles IT, III, snd IV,
1t may be found thst

F = 0.1419
or thet
Al = -0.0217 |
Al = -,0188 L
AR = -.0005
At = -,0012 ]

Finally, it follows that the new epproximations are

lo = -1.1877 1

U = 3.2512

Bo = . )4-6]_1

ﬁ'O = "'21"62J

The Relaxation Method

The relaxation method requires first the calculation of the
19 columns displayed in table I. Further calculation may be necessary,
but it is well to stop here and calculate Mg, M1y szo, Mg,, and Mpt,.
If either Mg o °F Mgto is the largest of the four derivatives, no more

columns will have to be computed. If, however, My, 1s the largest

derivetive, one more column must be found; wherees i1f M;, 1s the

largest two more must be found. Referring to equations (27), i1t may be
seen that M3, 1s the largest of the four derivatives. Calculating
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columns 20 end 21 of ta.ble I1 snd using equations (20) and (27), it mey
be seen that

Al = -D.0255
or that the new approximation to 1 1s

lo = -1.1915

The Taylor's Series Method

With circled numbers referring to columns in teble I, it may be
seen that equations (21) become

Inserting the values of these sums found in ta.ble I and solving
the resulting equations,

Al = -0.2089
Al' = -.1680
AB = .1353
At = .0139

Also, the new spproximstions are

lg = -1.3749
1ty = 3.1020
Bo = .5969

Blg = -.2311
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Final Values of the. Paremeters

Calculation of 1, 1 1', 8, and B'.- Repesated spplication of any of
the methods yields the following values of the pa.rameters to about
three significant figures- .

1= -1.366
1t = 3.071
g = .6141
gt = -.2083

(28)

These values of the parameters give, finally,

M = 0.000895 (29)

Calculation of the gtsbility parameters.- The stability parameters
b, k, C;, end Co oOf the test airplane from which the data of the pre-
vious exsample were meagured will now be calculated. Using the values
of 1 and 1' given in equations (28) and applying equations (23),
it may be seen that

b = 2.732 }
k = 11-30

In order to find C; and C% the method desg¢ribed, it is neces-
sary to find the functions e~ 8(1:{ cos 1't and e~!%8(t) ein 1't and
to integrate with respect to t to find oy and oy, respectively. The
functions ox and ox' were found by means of a planimeter, utilizing

figure 1 (see table V). Applying equations (25), and allowing the cilr-
cled numbers to refer to the columms In table V, 1t is seen that

®x % @%-®
Applying the least-squares principle, the following equations are
obtained:
-]
2xz @ -i—%zx@=z.x@
-—H@ x@ +32:@ --z @ x @ |



Thus, utilizing the sums displayed in teble V,

or, recalling that

c

"'i'? = '12o31‘

c

7% = 5.17
1t = 3.071,

Co = -37.90

C, = 15.88

EVALUATION OF THE METHODS AND DEVICES

FOR ACCELERATING CONVERGENCE

NACA TN 2622

Before evaluating the methods, it is necegsary tc give the time
required tc epply each of them. The following tsblie presente the mmber
of hours required for one application of the corresponding method,

The time required for a single applicatlon without
the check is roughly three-fourths of the total time giver in the follow-

ineluding a check,

ing taeble:

Time Required for a Single Application

of the Methods

Time ..
Method required
- (hours)
Steepest descent along & tengent 3
| Bocth!s method €
ESteepest descent to & minimum 6% i
] |
! Taylor'e seriee method 512' !
i 1
; Relaxation method 3% E
f ]

Two applicatlons or the Taylor's series method gave & value of
4 = 0.000895.  Three spplicstions of the method of steerest descent tc
g minimtm and of Bootik's method are required to obliain correspondingly
The vaiue of M obtained after three applications
of Becoth's method ie slightly smeller than thet glven by the other twc
methods; however, ae is indicated by the followlng evalustion, it is not

smail vaiues cf M.



NACA TN 2622 ) - : I o7

believed that this small added benefit merits the additional labor
involved in Bootbés method. The total time required for the Taylor's:
serieg method to bring the value of M down to the value given by
equation (29} is 11 computer hours; for the method of steepest descent
to a minimzk, 19 hours were needed, whereag Bootht!s method required
24 hours.

The time of 3-1/4 hours glven above for a single application of
the relaxation method does not tell the complete story. It should be
reallzed that in a second lteration by means of the relaxation method
many of the columns and sums which are needed are identicsl wilth the
corresponding columns or sums in the previous lteration and thus need
not be computed. For exemple, in fitting a sum of two exponentisls, if
one iteration changes = B! (say), only 7 out of 21 columms must be recal-
culated at the next iteration. Thus, although 10 lterations are required
to reduce the value of M +to spproximately the value given ln equa~
tion (29), 20 hours are required for the job.

Two further points should be made before an evaluation is applied
to the above methods. First, it should be noted that the amount of work
required toc solve a given problem by the method of steepest descents
increases very repldly with m (where, as before, m 1ig the number of
parametere considered in the problqm), due to the necegsity for calcu-~
lating all second derivatives of M wilth respect to the parameters.

The rate of increase of hours of lasbor for the Taylor's series method,
while not ag rapid as for this last method, 1s still quite high. On the
other hand, the amount of lsbor required to apply the relaxation method
or Booth's method Increases relatively slowly with m.

Finally, 1t should be realized that there are many devices avail-
gble for accelerating the convergence of the iteration process. These
deviceg become evident as familiarity with the methods Increases. It is
important to understand that any method, however lrregular, is to be
congldered appliceble provided only that the value of M 1s made to
decreage. Such a device, for example, 1s the followlng. Buppose
repeated. application of one of the methods shows that the sign of the
increments to be added to one of the parameters ig always the game. A
device which 1s often applicsble in this case would be to Increase the
value of the increment found at gome lteration. Conversely, if the
slgns of ecme increments change at suc¢cesslve lteratlons, it may be
found edviseble to use an increment not quite as large-as that indicated
by the method used. For a further discussion of these accelerating
devices, see reference &.

Due to the fact that the relsxation method varles only one param-
eter at a time, the computer is more aware of what is belng accomplished
at each iterstion when spplying this method than when applylng the other
methods. This, in turn, maskes it easier to devise and apply "tricks"
like the two described above for accelerating convergence when applying
the relaxation method than when applying the other methods. This is
particularly true when the number of parameters is large.
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Taking all these factors into account the followlng conclusions
would appear to be valid.: S o

1. If the number of parameters is less than five or six, the
Taylor's series method seems very well adapted to soclving the problem.
The method of steepest descent to a minimum also may be applied success-
fully, but more time 1s required for the minimizastion. Further, the
type of computations used in the method of steepest descent to & mini-
mm, belng difficult to systematize, is peculilarly subject to numerical
error on the part of the computer. Both the relaxation method and
Booth's method-also require more time than the Taylor's series method
and. are not as well sulted to the gsolution of the problem as either of
the other two methods.

2, If the number of parameters exceeds aix, either Booth's method
or the relaxation method may be applied successfully. Since Booth's
method veries all of the parameters together rather than changing only
one at a time as does the relaxatlon method, the former 1s to be
preferred, except if it is desired to allow the computer to apply his
own discretion to increase the rapidity of the convergence.

Only one more thing remains: the eveluation of the method of damped
least squeres. It should he remembered that thls method was devised for
the purpose of solving problems for which the Taylor's serles method
fails to converge. In the application of this method, the weighting
factors w and wx whichk occur in equation (44) must be found at each
iteration, thus adding further calculastions to an elready imposing array.
Also, there are gpeveral devices which may be applied which remove the
need for such a method with its attendant complications. First, one of
the other methods described may not fall to converge and msy be applied .
in place of the Taylor's series method. In particular, the method of
steepest descent along a tangent may be used followed by applications
of the Taylor's meries method. Second, a new first approximstion may be
found from which the Taylort!s series methed or one of the other methods
may converge. Finally, one of the devices mentioned sbove for increas-
ing the rapidity of convergence may often 4o more than this: these
methods frequently will csuse a method to converge where 1t diverged
before. It is belleved that intelligent use of these three devices can
take the place of the method of damped least squares.
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CONVERGENCE TO. A MERE STATTIONARY POINT
AS OPPOSED TO A TRUE MTNIMUM

To review, what has been done thus far is the following: a
poinlt P, (g:l(o),_ xg(o)... s xm(o)) has been found such that

g::—k (xl(o), xa(o) cee xm(o)) =0, k=1,2, ... , m

The possibility that higher derivatives of M are also zero at P has
not entered the discussion. A point at which 811 the first and second
derivatives of M are zero may be called a stationary point, as opposed
to a true extremum (maximum or minimm) at which some of the second
derivatives of M are not zero. (If M were a function of one varigble,
say X, alone, a stationary point would be a point of inflection at

which dM/d.x = 0.) This sectlon will be devoted to a criterion for
determining whether the lteration processes have converged to a true
minimum or to a stationary point.

tet M(°) be the value of M at (xl(o)_,_ X2(o), cee s xm(o)).

3%

ence 4, Booth shows that if M(o) is & true minimum, the quadratic form
m \

Q = Z Midxixj
i,J=1

Let Mij be the value of at (xl(o), cee xm(o)_). In refer-

is positive definite, while it is well known (see, e.g., reference 10,
P. 137) that the form Q 1s positive definite if and only if the fol.
lowing conditions hold: '

M:LJ.>°W

Ma1 M3

M >0

21 Moy
Mig Myp Mpg : (30)
o > 0 -

Mg; Mgy Mgg

.“MiJ"i,J=l-,. vee y,m> 0
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In general, for curve-fitting problems conditions (30) do not have
to be applied since the curve q = g(t) may be plotted and compared
with the curve ¢ = qe(t), and it will usually be nade clear whether or
not a minimum has been reached. There are cases,. however. where this ia
not so clear;’'in these cases, the conditions (30) may be. impmortant.

If it has been discovered that the minimization procedure hags led
to & stationary point rsther than a true minimum, the means by which
this difficulty may be overcome are not straightforward and a good deal
of ingenulty mey be required. The problem 1s, actually, similar to
the problem of increasing M which was discussed sbove. Such devices
as finding new firstapproximetions, applying one of the other methods,
etc., may be used. In particular, when finding new first approxima-
tions, choosing them farther in the same direction as the parameters
were golng when converging from the old approximations to the station-
ary point will often be fruiltful. =  _.

USES OF THE METHODS OTHER THAN CURVE EITTING

The problem of curve fitting a nonlinesr Punciion hae been disg-
cussed at length, but it has hardly been mentioned that there are other
important uses for. the methods discussed herein. These applications
will be briefly discussed in thé present section.

The first application.is evident; the method may be applied to any
minimization problem besides curve fitting. Such.e problem arises in
connection with guided missiles, for example. Therg are certain param-
eters of the missile and its control system (servo gain, time constants, ~
ete.) which are—susceptible to adjustment; such an adjustment is sought
which minimizes the miss distance.

A second type of problem is one which frequently ariees in applied
mathematlcs. It may be generally described by saying that 1t includes
any problem which may be reduced to a minimization problem. TFor example,
conglder the set of equations

-0
0

q’],(xl, sse 5 xm)

c"2(3‘1: see g xDI)

[}

(31)

Pn(x1, oee 5 xXm) =0

which are to be solved simultanecusly. {It should be noticed that m
does not have to equal n. The definition given below of a "solution”
of equations (31) includes the possibility m = n as a special case.)
Equations (31) may or may not be linear. This problem may be reduced
to one of minimization by defining a solution of equations (31) as any
set of values of x,, ... , Xm which minimize  _
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Tnis definition evidently includes the case where equations (31) have a
solutlon in the classicael sense. A numerical example of this type of
problem follows.

Consider the set of two equations
xl = E:Ln X2
X3 + Xp=1

These may be solved by minimizing

M= (x; - sin x5)% + (x;+x-1)%

Letting M; = ﬂ-, Ms = %—, we have

Bxl 2
M; = 2(2x3+x 1~ sin xp)
' sin 2x
My = 2 x1+Xg-1-Xx; COB Xt -—-——32
Rather than cobtain first approximations by' some cumbersome graphi-
cal method, x3 = xp ='0 may be arbitrarily taken as an spproximstion

end the method of steepest descent along a tangent (equations (1k))
applled.

If zero subscripts denocte the value of M and its derivatives at
the first approximation xi1,5 = X245 = 0,

Mo = 1,
Mlo = =2
Mz, = -2
Applying equetions (14),
A%, = § = 0.25
pxp =5 = .25

Changing notation so that zero subscripts refer to the new spproxi-
mations -
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xlo = 0'25
xZo = .25
we obtailn . -
Mo = (0.0026)% + (0.5F = 0.25
Mig = 2(-0.497h) = -0.9948
Mz, = 2(-0.0025) = -0.005

Therefore, agein using equations (14),

X1 = 0.2513
Axp = .0013
and, again changing notation, - - e =
xlo = O. 5013 .
x2o = '2513 - — -

This method may be continued until M increases, and it may be followed
by applications of one of the other methods.

Another common problem which may be solved i1s the solution of
polynomial equations (or, for that matter, other types of equations).
This problem is, of course, the speclal case of the preceding problem
which oceurs when m = n = 1. Thus, the equatibn

®ox) =0

may be polved for x by minimizing

M= [9(x)F
CONCLUDING REMARKS

Several methods for curve fitting a nonlinear function by least
squares have been described., If the number of parameters which may be
varied in any problem to obtain the best fit for a set of data be denoted
by m, the evalustion leads to the followlng eonclusions:

l. In genersl, the method of steepest descent along a tangent
should be first epplied to the first epproximations. One_of the finer

methods should then be used to improve the parametric values obtained by

this method.
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2, The method of _steepest descent to & minimum, while theoret-
ically quite good, is rather long, the lehgth of time required for a
single iteration increasing repldly with m, the number of parsmeters.
For this reason, the method may be applied successfully if m 1s not
greater than four or five; it is too cumberscome for higher order systems.

3. The Taylor's series method is somewhat better than the method
of steepest descents from the point of view of speed and accuracy. The
method is very well suited to problems in which m i1is less than five
or six. It has the disadvantage of requiring the solution of a set of m
simultaneous equetions at each iteratlon, and thus mey grow avkward for
large m. :

4. The relaxation method requires less time for a single iteration
than any of the other methods. However, not as much 1s achleved per
iteration. More precisely, while the other methods described improve

 the values of all the parameters at each iteration, the relexation
method changes only one parameter at a time. This disadvantage also

. has a compensation, however, in that a greater feel for what is being
accomplished at each step is to be had. That 18, the computer may use
more of his own discretion and intelligence to improve the convergence.
The relsxation method is well adapted to systems with large (i.e.,
greater than 6) values of m.

5. The amount of labor required for Booth's method, along with
the relaxation method, Iincreases relstively slowly with m. Thus,
either Booth's method or the relaexatlon method may be aspplied 1f the
. number of parameters is large. '

6. One further method, the so-called method of demped least .
squares, 1s discussed in the body of the report. This system was devel-
oped for use in cases where the Taylor's series method failed to converge.
It might seem, however, that other devices, finding new first approxima-
tions, spplication of one of the other methods, under- or over-relaxation,
and so forth, eliminste the need for any such method.
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These conclusions may thus be finally summed up as in the following

table:
Method ) Evaluation

Steepest descent A rapid method for improving first

along a tangent approximations. Should be used on all.
Problems unless it 1s definitely known
that these spproximstions are very good

Taylor'te series E This appears to be the best method to

nethod Co apply 1f the number of parameters is less
then five or six

Steepest descent to Rather cumbersome, but may be applied

a minimum : successfully if the number of parameters
does not exceed four

Relaxation method . : Useful 1f the number of parameters exceeds
six )

Booth's method - | This method appears best 1f the number of
perameters 1ls very much greater than eight.
If m 1is between six and eight, Booth's
method and the relaxstion method sppear to
be equally useful o S ’

Damped least squares Devices described above would appear to
eliminate the need for any such method

Ames Aeronsutical Laborsastory,
National Advisory Committee for Aeronsutics,
Moffett Field, Celif., Oct. 17, 1951.
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TABIE II.- THE METHOD OF STEEPEST DESCENT TO A MINIMUM

i » 5 [3 T [ 9 0 |11 [ 12 [ 13 ] 1h [ 15 [ 16 [ 17 ) 1B | 13 20
-« The first ninstsen columns are given in tshle T > @"@ @"'@
1 0.0338
e 0300
3 L0091 .
; i -.0258 R
: o | e
T -.1%2h -4
) -ATe -1k
9 ~ 1777 -.119
10 - 1577 -.089
11 -.1158 ~-.058
12 =054 -.020
13 0067 |, .ol
1k Qo7 .033
1 L1316 052
16 SThb 060
17 1976 063
18 -1983 050
19 ATTL ORT
20 .1380 .032
m 0869 013
ga 0293, =001
ea - 0270 -.015
2 e | o
2. [ S |o-.033
ar ; -1k .
8 -.1318
29 -2 200k
E@" - o008 & @x@) = o0.200 E @x(@ = -0.03 z (D@ ~ oot
L @x@3) - o0.00%3 (9" -o.ps z @x@ - oo £ @)xE) = o.0029
z @)xE9 = -0.004  z @x@® - o.amg 2 @x@ = o061 E@® @ =022
L ® x@ = 0.000223 r @ = 0,6%56 5 @x = -0.00300

z @ x(y) = -0.00028 : ®" - 1,2437 £ @x@ = -0.1950
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TABLE IIT.- BOOTH'S METHOD; CALCULATION OF M;
14 2 3 3 5 6 7 8 9 10 11 12 13 14
Ele| o | (@ vt [0 B |6 O |@x® [®xD |@xs |@re |@-@ | o [@-B
110.hl-0.5264 lo.5007 | 1.2557 1 0.3009 1 0.9508 1 0.1831 1] 0.5616! 0.0839 |.0.1h23 0.226 lo.22h | o.002
2| .5 -.6580| .5179 | 1.5697 L0011 [ 1.0000 .0006 5179 .0003 -.1312 .131 .120 011
3| .6| -.7896] .45k0 | 1.8836 | -.3077 L9515 | -.1397 4320 -.06k0 | -.1095 .06 020 .026
1 .7l -.9212( .3980 | 2.1975 | -.56865 8099 | -.2334 3223 -. -.0817 -.025 ~.057 .032
5 nB -l 05-28 -3h'm 2-51]-l'|' "‘.&)7‘9 oﬁg3 ".2820 -2057 -.1292 "‘-0521 - 077 '1112 l035
61 .9]|-1.18uh | .3059 | 2.8254 | -.9504 3110 | -.2907 .0951 | -.1332 -.0241 -.109 -.148 .039
7Tlt.0]-1.3160 | .2682 | 3.1393 | -1.0000 L0023 |. -.2682 L0006 | -.1229 -.0002 -.123 -.160 .037
B811.1|-L.b476| 2350 | 3.4532 | -.9519| -.3065} -.2238 | -.0721 | -.1025 .0183 =121 | -.150 .029
911.21-1.5792 | 2061 3.76721 -.Bro7T| -5855 ) -.16T1 | -.1207| -.0765 .0306 =107 -J127 .020
10 |1.3{-1.7108| .1807 | %.0811 | -,5902| -.80T3{ - -.1459 | -.0488 .0370 -.086 | -.097 .011
10 1.4 -1.8520 | L1584 | 43950 | -.3122| ~-.9500 | =-.0495 | =-.1505 | -.0227 .0381 -.061L |-.062 .001
12 j1.5 ] -1.97h0 | .1389 ] k.TO90] -.0033)-1,0000| -.0005] -.2380 | -.co02 .0352 -.035 -.032| -.003
13 | 1.6 | -2,1086 | 1218 | 5.0229 L3095 | -.9522 03721 ~-.1360 .0L70 .029k -.012 -.0056 -.007
1k ]1.7{-2.23721 .1068| 5,3368 5807 -.8112 0624 | -.0866 L0286 0219 007 017 -.010
15]1.8]-2.3688] .0936 | 5.6507 8066 | -.5912 0755 | -.0533 0346 L0140 .021 .030 -.000
16 | 1.9 | 2.5004 | 0821 | 5.9647 o897 | -.3132 ,0780 | ~.025T L0357 .0065 .029 036 | -.001
IT | 2.0 | 2.6320 | .0TWO| 6.2786 | 1.0000| -.0045 L0719 | -.0003 .0329 .0001 .033 035 | -.002
1B [2.1 | 2.7636 ] .0624 | 6.5925 .9526 .305h L0594 .0190 L0272 -.0048 .032 032] o
19t2.21-2.8052| .0553] 6.9065 8120 5837 049 L0323 .0206 -.0082 .0P9 027 .002
20}2.3}~3.02681 .ok85| 7.2204 .5920 8059 .0287 L0391 |  .0131 ~.0009 .023 .020 003
aj2.;]1-3.158% | .0k25| 7.533 | .3143| L9493 | .0134| .ok03| .0061 | ~-.0102 .016 015 .00l
22|2.5f-3.2900 | ..0373 | T.8L83 L0098 | 1.0000 L0002 .0373 0001 -.0095 010 .01l -.001
23|2.6|-3.4210| .0327| 8.1622 ] -.303k 520 | -.0099 0312 -.0045 -.0079 .003 .008 -.005%
24 1 2.7 -3.5532 |  .0286 | B.h761 -.5827 B127 ) -.0167 02321 -.00T7T | -.0059 -.002 .005{ -.007
2512.81-3.6848 ] .0251 | 8.7900| -.8052 5930 | -.0202 019 { -.0093 -.0038 -.006 .003 -.00%
2612.91-3.8164 | .0220 | 9.1040| -.9LSO 31531 -.0209 L0069 | ~.0096 -.0017 ~.008 .001 -.009
2713.0]-3.9480 | .0193 | 9.4179 | -1.0000 00681 -.0193 L0001 -.0088 | o ~.009 |0 «.009
% 3'1 ‘h-w% -0169 9 7318 - 9532 "-3@ - 0161 "cowl -.0071(- -0013 "'-m o "-m9
2913.2]-4.2112| .0148|10.0458 | -.8133] -.58i18] -.0120] -.0086] -.005% .0022 -.008 o -.008
& @2-0.0381

gt
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TABLE IV.- BOOTH'S METHOD; CALCULATION OF M, s

1| 2 3 L 5 6 T 8 9 10 11 12

E t 1t e\l [ 1 cos@sin@ @)@ @@FXB @X. B! @-@ @
1|0.4 | -0.496k | 0.6087 | .1.2818 | 0.2850 |0.9585 | 0.1735 | 0.583k | 0.0798 | -0.2454 | 0.225 .00
2 .5 ~.6205| .537T| 1.6023|-.0316 | .9995 | -.QL70| .537h | -.0078} -.1339 . .
3| 6] ~.746 | ATh9| 1.9228 | -.3448 | .9387 | -.1637| 458 1] -.0193| -.1111 .036

Ll 7| -.8687| .4h195| 2.2432| -.6229 | .7823 | ~.2613| .3282| -.1201| ~.0818| -.038

5 -8 --%28 '3705 2'%37 -'8376 ‘5"’1'62 --3103 -2021" --11‘27 "-Omh- "‘-092

6f .9|-1.1169| .3273| 2.8841| -.9671 | 2546 | -.3165 | ..0833 | -.1455 | -.0208| -.125
Tl1.01-1.2410} .2801] 3.2046| -.9980 |-.0630 | -.2885 | -.0182| -.1327 o0k5 =137
8l1.1]-1.3651| .255h| 3.5251| -.927h |-.3741 | -.2369| -.0955 | -.2089.] .0238| . -.133
gl1i.2|-1. L2256 | 3.B455 | -.7623 |-.6472 | ~.1720 | -.1460 | -.0T9L 0361 -.116

10| 1.3|~2.6133| .1992 | L.1660| ~.5107 |-.854% | -.1035 | -.1702 | ~.0LT6 .Oh2h -

110 1.5 | -1.737h | IT60 | L.hB6L | -.2241 [-.9Th6 | -.039% | -.1715 | -.0181L| .0427| -.061
1225 ]-1.8615{ .155L] %.806%| .09h5 |-. L0147 | - 1547 | L0068 .0386 -.032
13]1.6 {-1.9856 ! .1373| 5.127h| .ho032 |-.9151 | .0554 | -.1256| .0255 .0313 -.006
14117123057 1213 5.5478 7 6705 (-.Thi5 ] 081k | -.0895 | .03Th 022k 015

15| 1.8 | -2.2338| .1071| 5.7683| .B7ok |-.k92k{ .0932 | -.0527 [ .0k29 .0131 ,030
16)1.9|-2.3578| .00k5| 6.0887] .9812 |-.1932] .00281-.0183 | .o427 L0046 .038
17le.0l-2.4820 | 0831 6.5002 ) .9om | 12571 08291 01051 08811 -.0026 Lo

18| 2.1 |-2.6061L] .0T38| 6.7297 .9020 | .4318| .0666| .0319} .0305| =-.0079 .039

19| 2.2 -2.1302| .0652| T.0501] .7201 | .5939| .okt 0852 .o236| -.0113 .033

gg 2=3 "25851'-3 505',76 ?eST‘.‘Q ehéh'a 38851]- 29268 =(_)5lg 5(_)12_3 - 0127 wj
22,4 [-2.9784| .0509| T.6910| .1623 | .9867| .0c0B3| .0502 ) .0038| -.0125 015
22(2.,5]-3.10251 .0449| 8.0115| -.1570 | .9876 | -.c0T0 | .O4K3 | -.0032| =-.0110 008

23| 2.6 |-3.2266{ .0397| B.3320| ~.k600 | .BB79 | -.0183| .0352| -.0084| ~.0088| O
eh|2.7|-3.3507] .0350| B.652h| -.T163 | .6978 | ~.0250L 1 .oekh | -.0115| -.0061 -.005 .
251-2.8 | ~3.k78 | .0310| B.9729 | -.8996 | L4366 | -.02719| .0135|-.0128| -.0034| -.009 .
26 | 2.9 | -3.5989 | .027h| 9.2933|-.991% | .1311 | -.0272 | .0036|-.0125| -.0009 | -.012 .
27 13.0|-3.7230] .0242} 9.6138| -.9822 |-.1879 | -.0238 | -.0045 | ~.0109 oolrL| -.012 |oO
26 |3.11-3.8471| .0213}| 9.9343 | -.8730 |-~-.4677 | -.0186 | -.010k | -.0086 .0026 -0l o
2913.2[~3.9712| .0189]10.2547 | ~.6T50 |~.7T379 | -.0128 | ~.0139 { ~.0059 .0035 -.009 |0
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TABLE V.- COMPUTATIONS REQUIRED FOR THE CALCULATION OF Cy ARD C, g

1 3 % 5 6 7 8 9 10 1 1P 13 1k 1% 16 17 28
4 e | com 17ty |tn Vi OO | Ox® | @@ |FxB | o | a |o-a [a -0 % % @@ | @x®
b3 1.000 | 1.000 o 1.000 | © 0 [ a. o 0,02172 | 0.01468 | 1.000 |0 0.0188 | o
2 1o | .588 153 108 [ .16 005 «00L | .00003 | .000O1 .02167 | .o0kg7 | 923 | .1v3 ] .013B2 -00310
3 1186} .993 .302 1.093 JHT .0kg 016 | 00128 | .opo3o | .o2oMk | .ookG8 | .B32 | .gsh | o122 .005k0
1 1.227 896 ) 1.099 Sh6 QS 057 0053k | 00220 | L0163 | L0278 | .T730 00933 200597 -
5 1.3 | 817 D76 1.0tk | -7 ke 093 L0176 | 0008 M—:ﬁ& 00004 | 622 | JhsRL onmén JL0R38
6 107 | .79 693 1.012 977 |10 058 | .o1f12| .01088| .00 mug . . .0021Q ool
7 1.50T | .60% 196 S | 1.200 .027 03 | 02233 | .00k22{ -.000kd | -.b0OT Eoil % 00030 omE
8 1.613| .476 .Bo 768 | 1.%29 |"o 0 02172 | L00k98 ] 0 0 295 0 0
9 L72T| .33 2 JB0 [ 1.627T | o 0 -.02172 | .othgb o jo Jdgs| ms| o 0
o 2z 23 eh 25 2% 7 28 29 30 1 » a3
5 Bx1 (9-0 | Ox@ |Qxr @ |0:0 BB | O+@ | Bxs| Bxs | B-® |ati0 | ®-®
1 -0.02086 | 0.08T26 | 0.08726 | o.0k600 |-0.02067 | 0.c1633 | o 0.08716 0.6 | © 0.61k o, -0.61h
2 -.020k% | .0BTOO 08030 LOW59T | -.02060 | 01637 00234 -0RoBL 56T -.0%0 SOT 008 [ -89
3 -.02003 M. ] 06991 04508 | -.02792 QUTLE .00k53 073 51 ~.055 566 095 -7
k -.01TH5 | .OBT76 | ..oMgkS 20395 | -.02238 | 01887 0612 03598 A8 076 324 200 | -.32h
5 - . . 0B66T | 0276k | - 0h03 | 00813 | 03202 30| -.om 73 30| -.163
& -.00560 | LORS88 00831 LAZF | -.00kE i 00379 01230 i 103 a7 xO| -.087
7 -.00104 00227 0091 00233 | -.000% | .00178 L0000k 085 L2561 -1 3% 20| -.036
8 ) 0 0 ] 0 ] o 0 JA8L | -aak 295 218 -.023
9 0 0 0 0 o 0 ) 0 120 | -.13h 235 22y | -.o00
2 @9% - 0.0003988
i | @& = o002k [
@ @ - -o.0200h
s @ - oo
2 @ G - -0.1509 E
o 2
NA‘ ]
%
no
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Figure |.- The varialion with time of two quantities required for the calculation
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